

pythonic science

CH410/510 Scientific Computing

	The class will meet Mon and Wed at 9 am 1 hr, and then Fri for 2 hr.

	In general, Mon and Wed will be instruction days where we cover new
programming material. Fri will be an open “lab” where you will work on
exercises in class.

People

	Mike Harms OH: 12 pm Thursdays, Will 342)

	Joseph Harman OH: 1 pm Wednesdays, Will 342)

Conceptual Goals

By the end of the course, students should understand:

	Basic python: data types, key words, control, functions and imports

	Core python extensions for scientists: scipy, numpy, and jupyter

	Strategies for dissecting problems and formulating solutions in code

	Where to go to pick up skills in the future as the need arises

Skill Goals

By the end of the course, students should be able to:

	Write basic python programs from scratch

	Identify existing libraries for a problem and learn how to use them

	Generate arbitrarily complex custom plots

	Simulate experimental sampling

	Manipulate scientific datasets of the following types (at a basic level):

	High-throughput sequencing data

	Chemical structure data from databases such as the PDB

	Images

Course schedule

Assignments

	Project prospectus (Due May 10)

	Final project (Due June 10)

Weekly assignments

	There will be 8 labs.

	We will (generally) start the labs on Fri in class.

	They will be due the following Wed in class.

	They can be turned in by email.

Grading

	
	Breakdown:

	
	25% attendance

	25% final project

	50% labs (6.25%/lab)

	Labs will be graded based on whether they are turned in, whether we can run
the notebook, and whether they notebooks give the right results.

	The final project will be graded according to the rubric given in the
Final project description.

Resources

	Cool Python cheat sheet [https://perso.limsi.fr/pointal/_media/python:cours:mementopython3-english.pdf].

	Python cheat sheet

	main github repo [https://github.com/harmsm/pythonic-science].

Indices and tables

	Index

	Module Index

	Search Page

Index

Python cheat sheet

Comparison operators

Used to compare two objects. Returns True or False.

	x < y (less than)

	x <= y (less than or equal to)

	x > y (greater than)

	x >= y (greater than or equal to)

	x == y (is equal to)

	x != y (is not equal to)

These can be combined using and and or.

Example

x = 0
y = 5

if x < y:
 print("x is smaller than y")

if (x < y) and (x < 1):
 print("x is smaller than y and x is less than 1")

Conditionals

if condition_one:
 do_something
elif condition_two:
 do_something_else
elif condition_three:
 do_another_thing
else:
 do_yet_another_thing

where condition_one, condition_two and condition_three
are things that can be read as True or False. else is run if
none of the other conditions are met. If multiple conditions are met, only the
first one is executed.

Example

x = 2
if x < 0:
 print("x is negative")
elif x == 0:
 print("x is zero")
elif x > 0 and x < 100:
 print("x is positive but less than 100")
else:
 print("x is bigger than 100")

Loops

for syntax

for x in iterator:
 something_to_x

where iterator is something like range(10) or a list that has
multiple entries.

Example
.. sourcecode:: python

	for i in range(10):

	print(i)

while syntax

while condition:
 something

where condition is something that can be read as True or
False

Example
.. sourcecode:: python

i = 0
while i < 10:

print(i)
i = i + 1

Warning

If you forgot the i = i + 1 line in the code above, it would create
and infinite loop and your code would freeze. This is a common mistake
when using while loops.

continue and break syntax

	continue hops to the next iteration of the loop

	break terminates the loop

Example

Will print i from 6 to 90
i = 0
while i < 100:
 i = i + 1
 if i < 5:
 continue

 if i > 90:
 break

 print(i)

Datatypes

Single-value datatypes

	int (integer)

	bool (True or False)

	float (decimal number)

List-like objects

list

	Specs:

	collection of arbitrary objects

	indexed by number (starting from 0)

	Creating new:

	some_list = [] creates a new, empty list

	some_list = [1,2,3] creates a new list with three entries

	Adding new entry:

	some_list.append(1) appends the integer 1 to the end of the
list

	some_list.append({}) appends an empty dictionary to the end of the
list

	Remove entry:

	some_list.pop(1) returns the second entry and removes it from the
list

	Getting values:

	some_list[0] gives first entry in list

	some_list[-1] gives last entry in list

	some_list[1:3] gives the second and third entry in list

	Setting values:

	some_list[0] = 5 sets the first value to 5

	some_list[-1] = 5 sets the last value to 5

	some_list[1:3] = ["test",8] sets the second and third entries to
"test" and 8, respectively.

tuple

	Specs:

	collection of arbitrary objects

	behaves just like a list except that once it is created it cannot be
modified.

	Creating new:

	some_tuple = (1,2,3) creates a new tuple

	Adding new entry: can’t be done

	Remove entry: can’t be done

	Getting values:

	Indexing and slicing rules just like lists

	Setting values: can’t be done

dict

	Specs:

	collection of arbitrary objects

	objects are indexed by keys

	keys can be almost any type except lists and dictionaries.

	dictionaries are not ordered, meaning that if you loop through them
more than once, the items could pop out in a different order

	Creating new:

	some_dict = {} creates a new, empty dictionary

	some_dict = {"cows":27,18:"dogs"} creates a new dictionary with
"cows" keying to the value 27 and 18 keying to the
value "dogs"

	Adding new entry:

	some_dict["meddling"] = "kids" creates a key/value pair where the
key "meddling" gives the value "kids"

	Remove entry:

	some_dict.pop("meddling") would return "kids" and remove
the "meddling/kids" key/value pair from the dictionary

	Getting values:

	some_dict["meddling"] would return "kids"

	list(some_dict.keys()) returns list of keys

	list(some_dict.values()) returns list of values

	list(some_dict.items()) returns list of tuples with all key/value
pairs

	Setting values:

	some_dict["scooby"] = "doo" would key the value “doo” to the key
"scooby"

string

	Specs:

	stores text

	behaves similarly to a list where every entry is a character

	Creating new:

	some_string = "test" creates a new string storing test

	Note that text in the string must have " around it.

	Adding new entry: can’t be done

	Removing entry: can’t be done

	Getting values: just like a list

	some_string[0] returns the first letter

	some_string[-1] returns the last letter

	some_string[1:3] returns the second and third letter

	Setting values: just like a list

	some_string[0] = "c" sets the first letter to "c"

numpy.array

	Specs:

	collection of numerical objects of the same type

	less flexible than a list (all objects must be same type, can’t change
dimensions after created).

	collection of numpy functions allow extremely fast enumeration and access

	requires import numpy at top of program

	Creating:

	numpy.zeros((10,10),dtype=int) creates a new 10x10 integer array of
zeros

	numpy.array([1.0,1.3,2.3],dtype=float) creates a new 3 entry array
of floats with input list values

	Adding new entry:

	Can’t really be done

	y = numpy.append(x,1.0) will create a copy of x with 1.0 appended
to it.

	Removing entry:

	Can’t really be done

	y = numpy.delete(x,0) will create a copy of y with the first
element removed.

	Getting values:

	Extremely powerful (and sometimes complex)

	x[0] returns the

	x[0,0,0] returns the bottom left corner of a 3d array

	x[0:5] returns the first five entries in a 1d array

	x[0,:] returns the whole first column of a 2d array

	x[:,:,:,2] returns a 3d slice at the third position on along the
fourth dimension of a 4d array

	Setting values:

	Exact same indexing and slicing rules as getting values

Libraries

Libraries are extensions of basic python that provide expanded functionality.
To get access to a library, add a line like:

You can then run this:

You can assign imported modules more convenient names. For example, the
following would do exactly the same as the above program.

You can also import functions (and other objects) from each module using the
from syntax:

Important libraries:

	math (math functions)

	random (generate random numbers)

	numpy (fast arrays and some math functions)

	scipy (tons of scienc-y extensions of python)

	matplotlib (used for making complex plots)

	os (used for doing things like listing files in a directory

	combinations (used to make combinations and permutations efficiently)

Functions

Functions are blocks of re-usable code that take arguments and return values.

Functions are defined using the def keyword. Anything indented under def
is part of the function.

def my_function(x):

 a = x + 2

 return a*5

z = 5
print(my_function(z))

Variables defined inside the function cannot be accessed outside of that
function. a from the function above is created and destroyed
every time the function is run.

Warning

Functions “know” about varibles outside the function. If I used z
inside of my_function, the program would run fine. This is a bad
idea because z is then implicitly defined. I could get a different
result if I run my_function(5) Always pass in variables as
arguments (like x above) rather than accessing them implicitly.

Final Project

The end goal of this course is that you will be able to build your
own software to solve your own problems. To work on this, you will write
a program to solve a problem or answer a question from your own research.

I would rather you select an interesting problem than worry about your ability
to code it. We’ll help you scope the problem with a project proposal. (The
earlier you turn this in, the better we can help you succeed). Further, the last
two weeks of class will be devoted working on your programs in class. If you
put in significant effort, but it becomes clear your program won’t work, we will
not dock you for this. Your program has to run and do something on the way to
your final goal by the end of class; it does not have to achieve the stated
goal.

Constraints

	The problem should be real.

	At the end of the day, the program you write should be useful.

	The approach should be feasible. This means it is not only mathematically
possible, but that you can make significant progress on the project in a
few weeks of coding.

	The problem should not be one you could solve better and faster using
an existing software package. If you say you’re going to write a
transcriptome assembler, I’m going to point you to Trinity (unless you
have reason to believe you can do better!)

	If you need data to develop the program (e.g. experimental images, sequencing
runs, etc.) these should already have been collected.

Resources

	Definitely use software packages that help you achieve your goals. If
you’re analyzing colonies on a plate, use libraries like PIL and skimage
–don’t write your own image parser!

	Talk to your lab mates and PI about interesting problems and what software
might be useful.

	Talk to Zach and me about strategies. For example, if you want to classify
stuff, machine learning might be the way to go. We’re not going to discuss
it in detail in class, but Zach and I can point you to resources that will
help you get started.

Project Ideas:

	Counting/classifying something in an automated fashion

	Fitting complicated model(s) to data

	Squeezing every last drop of information out of a high-throughput experiment

	Processing spectra

	Pulling shapes out images

	Tracking a particle in a video

	Extract some cool feature out of an MD simulation

	Machine learning to classify stuff

What you turn in:

Prospectus:

Due on (or, preferably, way before) Friday, May 10th.

It should have the following (bullet points are fine):

	Identify a problem from your research that you will solve computationally.

	Describe the strategy your program will use as a flow chart. (Can be hand
drawn, as long as it’s legible).

	Describe the data you will use to develop your program (for example: images
from a control and treatment condition).

	Describe how you will verify the program is actually doing what you want it
to do.

	Describe existing software that you can use to help solve the problem.

The point of the prospectus is to help you think through the project, not to
create busy work. I will review the proposal and discuss it with you one-on-one
during one of the in-class workshops. The earlier you bring it in, the earlier
you can get rolling on the final project. If there are issues that should be
addressed, I might ask for a revised version.

Final project

Due on Monday, June 10th.

You will turn in EITHER a url for a github repo OR a zipped directory containing
your project. The repo/directory should have the follwing structure:

README.md
any python-y bits
demo.ipynb
data_files/
 data_file_for_demo
 data_file_for_demo
 ...

Assessment critera:

	Does the README.md file give sufficient information to know what the software
does and how to use it?

	Does the software actually solve a meaningful problem or analyze data in an
interesting way?

	Does demo.ipynb run without error?

	Does demo.ipynb effectively demonstrate the capabilities of the
software?

	Is your python code well-documented and readable?

Jupyterhub

All lecture materials and homework will be distributed through a Jupyterhub hosted
here on campus. To access these assignments, open a browser (Google Chrome, Safari,
or Firefox, not Internet Explorer) and go to:

https://aclarke.uoregon.edu:8000

You may get a warning about security. Don’t panic, the page is secure. If that happens,
click the “Advanced” link, and you’ll get a new link that says “Process to aclark.uoregon.edu (unsafe)”.
Click that link as well and you’ll arrive at this page:

[image: _images/jh-signin.png]

Fetching assignments

When we release a new assignment or lecture folder, you will need to fetch it
through the Jupyterhub. Login and you will see your personal Jupyter dashboard.

[image: _images/jh-dashboard.png]
At the top of the dashboard, click on the Assignments tab. This will display
three panels: Released assignments, Downloaded Assignments, and Submitted
Assignments.

[image: _images/jh-released.png]
The Released assignments panel lists lecture materials and homeworks
that are available to download. You can acquire an item from this list by clicking the Fetch
button. The item will move into the Downloaded assignments
panel.

[image: _images/jh-downloaded.png]
Click on the Files tab at the top of the page, and you’ll see the items in your
dashboard. Now you can open the items you snatched from us, but DO NOT run the
notebooks on the server.

Note

You can always re-fetch assignments if something goes wrong. Just Delete
(or rename) the bad folder from your dashboard, and it will reappear in the
Released Assignments tab. You can click Fetch again and get a fresh copy.

Downloading assignments locally

Fetching items does not download them to your computer. They are still on the server.
To download a notebook to your computer, check the box to the left of it and click Download.
Unfortunately, Jupyterhub only allows you to download a
single notebook at a time, so you’ll need to do this for each notebook.

[image: _images/jh-download.png]
This will likely download to your Downloads folder on your computer. You can
move them to whatever folder you use for this class and launch Jupyter to run them.

Note

Any changes you make to the notebook on your local computer won’t be saved on the server.
This is a local copy that you can freely change. If you want to start with a fresh
copy, just re-download the notebook from JupyterHub.

Submitting Homework

To submit a homework assignment that you’ve downloaded and worked on locally
(on your computer), you must upload it back to Jupyterhub and replace the original
file in its original location with your new file.

Login to Jupyterhub and navigate to the folder that contains the original notebook.
Check the box next to the notebook, click the trash button, and delete.

[image: _images/jh-delete.png]
[image: _images/jh-delete-2.png]
Next, click Upload in the upper right corner of the dashboard and upload your
notebook to the server. You’ll need to confirm the upload by clicking the Upload
button next to the notebook in the dashboard

[image: _images/jh-upload.png]
Once the file is uploaded, click on the Assignments tab at the top of the dashboard.
Find the homework assignment in the Downloaded Assignments panel and click Submit.

[image: _images/jh-submit.png]
The submitted assignment will show up in the Submitted assignments panel with
a timestamp printed to the right. We will collect assignments on their due date.
Any assignment not submitted through the Jupyterhub by the due date will not be
collected for grading.

Note

You can submit an assignment multiple times and we will always collect
the most recent version. No other students will
be able to see your submissions.

[image: _images/jh-submitted.png]

Online Reading Material

On day one, stackoverflow, docs, etc.

Reading

	Summary of quality-of-fit measures [http://connor-johnson.com/2014/02/18/linear-regression-with-python/]

	Books by Allen Downey [http://greenteapress.com/wp/]

	http://mcb112.org/

	gotchas [http://docs.python-guide.org/en/latest/writing/gotchas/]

Schedule

	Date

	Topic

	Due

	Mon 4/1

	Getting set up: python, jupyter, and git

	

	Wed 4/3

	Introduction to python and the jupyter notebook. Python as a calculator.

	

	Fri 4/5

	Conditionals, loops, lists, numpy arrays.

	

	Mon 4/8

	Functions and namespace.

	

	Wed 4/10

	Graphing and matplotlib.

	

	Fri 4/12

	Lab: Programming Puzzles

	hw 1 (intro)

	Mon 4/15

	Simulation Mike gone

	

	Wed 4/19

	Simulation

	lab 2 (puzzles)

	Fri 4/19

	Lab: Simulating an experiment

	

	Mon 4/22

	Model Regression

	

	Wed 4/24

	Model regression

	lab 3 (simulation)

	Fri 4/26

	Lab: Fitting models to data

	

	Mon 4/29

	Classification with machine learning

	

	Wed 5/1

	Machine learning

	lab 4 (fitting)

	Fri 5/3

	Lab: Classification with machine learning

	

	Mon 5/6

	Molecular structures

	

	Wed 5/8

	Molecular structures

	lab 5 (machines)

	Fri 5/10

	Lab: Calculating structural properties

	Project prospectus

	Mon 5/13

	Big(ish) data

	

	Wed 5/15

	Big data Mike gone

	lab 6 (structure)

	Fri 5/17

	Lab: Analyzing high-throughput sequencing

	

	Mon 5/20

	Microscopy images

	

	Wed 5/22

	Microsocpy images

	lab 7 (HTS)

	Fri 5/24

	Lab: Analyzing microscopy images

	

	Mon 5/27

	Memorial Day. No class.

	

	Wed 5/29

	Final project in class

	lab 8 (images)

	Fri 5/31

	Final project in class

	

	Mon 6/3

	Final project in class

	

	Wed 6/5

	Final project in class

	

	Fri 6/7

	Final project in class

	

	Mon 6/10

	—

	Final project

 _static/up.png

_images/jh-released.png
Z Jupyter Control Panel | Logout

Files ~ Running Clusters Assignments

Q

Released, downloaded, and submitted assignments for course: chs10 +

Released assignments

inductive-python chs10

Downloaded assignments

There are no downloaded assignments.

Submitted assignments

There are no submitted assignments.

_images/jh-signin.png
Z Jupyter

Username:

Password:

_images/jh-download.png
Z Jupyter Gontrol Panel | Logout

Files Ruming Clusters Assignments
Duplicate || Rename | Move | Downoad | [Upload | New~ | &
© 1 |~ | B / inductive-python Name 4 Last Modified
) seconds ago
@ & 00_jupyter-intro.ipynb 11 hours ago
O & 01_python-as-a-calculatoripynb 11 hours ago
© & 02_conditionals.ipynb 11 hours ago
© & 03_loops.ipynb 11 hours ago
O & 04_lists.ipynb 11 hours ago

O & 05_tuples-and-dicts-and-strings.ipynb 11 hours ago

_images/jh-downloaded.png
Z Jupyter

Files Ruming Clusters

Assignments

Released, downloaded, and submitted assignments for course: ch510

Released assignments

There are no assignments to fetch.

Downloaded assignments
inductive-python ~
00_jupyter-intro
01_python-as-a-calculator
02_conditionals
03_loops
04_lists

05_tuples-and-dicts-and-strings

Submitted assignments

There are no submitted assignments.

ch510

Control Panel || Logout

Validate

Validate

Validate

Validate

Validate

Validate

Q

_images/jh-upload.png
o

Tup B < sBEm = mcso
e Name ~ Date Modified
[Zachary's MacBook Pro ¥[8 homework-1 Today, 10:45 AM

Remote Disc

Select item New +
Shared

U] a Q Search Logout

Files

Q

5] Tags odified
(o Medin

1 Music

{8 Photos.

H Movies

inds ago

Al Files B

Options Cancel Open

_static/ajax-loader.gif

_images/jh-submit.png
Z Jupyter

Files Ruming Clusters Assignments
Released, downloaded, and submitted assignments for course: ch510
Released assignments

inductive-python-1 chs10

Downloaded assignments

homework-1» ch510

Submitted assignments

There are no submitted assignments.

Control Panel || Logout

Fetch

E I Q

_images/jh-submitted.png
Z Jupyter Control Panel | Logout

Files ~ Rumning Clusters Assignments
Released, downloaded, and submitted assignments for course: chs10 | ~

Released assignments

E E Q

inductive-python-1 chs10
Downloaded assignments.

homework-1» chs10
Submitted assignments

homework-1 ch510 2017-04-07 18:01:01 UTC

_static/comment-bright.png

_images/jh-dashboard.png
Z Jupyter Control Panel | Logout

Files Ruming Clusters Assignments
Select items to perform actions on them. Upload | New~ &

0 +~m Name 4 | Last Modified

Notebook list empty.

_images/jh-delete-2.png
Delete

Are you sure you want to permanently delete: intro-to-python-homework.ipynb?

_images/jh-delete.png
Z Jupyter

Files Ruming Clusters Assignments
Duplicate || Rename | Move | Downoad | [
@1 |~ | 8/ homework-1
=]

@ & intro-to-python-homework.ipynb

Control Panel || Logout

Name 4

Upload New~ &
Last Modified 4
seconds ago

an hour ago

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 pythonic science

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

